COURSE OUTLINE

(1) General information

FACULTY/SCHOOL	MARITIME AND INDUSTRIAL STUDIES				
DEPARTMENT	MARITIME STUDIES				
LEVEL OF STUDY	UNDERGRADUATE				
COURSE UNIT CODE	ΝΑΑΓΓ26	7 th semester			
COURSE TITLE	System Dynamics				
in case credits are awarded for separa course, e.g. in lectures, laboratory es awarded for the entire course, give t and the total cr	WEEKLY TEACHNO HOURS	ì	CREDITS		
			4	6	
Add rows if necessary. The organization of methods used are described in detail under					
COURSE TYPE Background knowledge, Scientific expertise, General Knowledge, Skills Development	Background knowledge				
PREREQUISITE COURSES:	NO				
LANGUAGE OF INSTRUCTION:	English				
LANGUAGE OF EXAMINATION/ASSESSMENT:					
THE COURSE IS OFFERED TO ERASMUS STUDENTS	YES				
COURSE WEBSITE (URL)	https://eclass.unipi.gr/courses/NAS444/				

(2) LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate (certain) level, which students will acquire upon successful completion of the course, are described in detail. It is necessary to consult:

APPENDIX A

- Description of the level of learning outcomes for each level of study, in accordance with the European Higher Education Qualifications' Framework.
- Descriptive indicators for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and

APPENDIX B

• Guidelines for writing Learning Outcomes

The course introduces students to systems thinking, a holistic approach of analyzing how the constituent parts of a system interrelate and how systems behave over time.

System Dynamics equipes students with background knowledge on system analysis, going beyond traditional approaches, studying systems by breaking them down into their separate elements. With the use of simulation software, students are exposed to business modeling to analyze maritime-related systems obtaining valuable insights.

General Competences

Taking into consideration the general competences that students/graduates must acquire (as those are described in the Diploma Supplement and are mentioned below), at which of the following does the course attendance aim?

Search for, analysis and synthesis of data and information by the use of appropriate information by the use of appropriate Respect for diversity and multiculturalism

technologies, Environmental awareness

Adapting to new situations Social, professional and ethical responsibility and

Decision-making sensitivity to gender issues

Individual/Independent work Critical thinking

Group/Team work Development of free, creative and inductive thinking

Working in an international environment

Working in an interdisciplinary environment (Other......citizenship, spiritual freedom, social

Introduction of innovative research awareness, altruism etc.)

.....

Upon the completion of the module students will be able to:

- Collect and analyse data
- Use system dynamics methodologies and tools for analysing data
- Make swift decisions related to the maritime industry

(3) COURSE CONTENT

Week	Topic
1.	• Introduction
2.	Systems Thinking
3.	Complex Systems
4.	The Beer Game I
5.	The Beer Game II
6.	Modeling Process
7.	Structure and Behavior
8.	Causal Loop Diagrams
9.	Stock Flows
10.	Mapping Stocks and Flows
11.	 Dynamics of Stocks and Flows
12.	Delays and modeling decision making
13.	• Recap

(4) TEACHING METHODS--ASSESSMENT

MODES OF DELIVERY	In-class lecturing
Face-to-face, in-class lecturing,	
distance teaching and distance	
learning etc.	
USE OF INFORMATION AND	E-CLASS
COMMUNICATION	

TECHNOLOGY

Use of ICT in teaching, Laboratory Education, Communication with students

COURSE DESIGN

Description of teaching techniques, practices and methods:
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, Internship, Art Workshop, Interactive teaching, Educational visits, projects, Essay writing, Artistic creativity, etc.

The study hours for each learning activity as well as the hours of self-directed study are given following the principles of the ECTS.

Activity/Method	Semester workload
Lectures	52
Case studies analysis	10
Individual or Team	78
assignment	
Non-guided study	10
Total	150

STUDENT PERFORMANCE EVALUATION/ASSESSMENT METHODS

Detailed description of the evaluation procedures:

Language of evaluation, assessment methods, formative or summative (conclusive), multiple choice tests, short- answer questions, open-ended questions, problem solving, written work, essay/report, oral exam, presentation, laboratory work, other.....etc.

Specifically defined evaluation criteria are stated, as well as if and where they are accessible by the students.

Group assignment

(5) SUGGESTED BIBLIOGRAPHY:

-Suggested bibliography:

 J.D. Sterman (2000), Business dynamics: systems thinking and modeling for a complex world, McGraw-hill, Boston

Additional readers for course is: None